Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A mixed-valence chloride-bridged (pincer) $I r^{\text {III }}$-(diene) $I r^{\prime}$ complex

Elizabeth M. Pelczar, Thomas J. Emge and Alan S. Goldman*
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA
Correspondence e-mail: alan.goldman@rutgers.edu

Received 5 February 2007
Accepted 7 May 2007
Online 23 June 2007

The title compound, [2,6-bis(di-tert-butylphosphino)phenyl$\left.1 \kappa^{3} P, C^{1}, P^{\prime}\right]$ di- μ-chlorido-1:2 $\kappa^{4} \mathrm{Cl}: \mathrm{Cl}$-($2 \eta^{4}$-cycloocta-2,5-diene)-hydrido- $1 \kappa H$-diiridium(I,III) hexane hemisolvate, $\left[\mathrm{Ir}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right.$ $\left.\left(\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{P}_{2}\right) \mathrm{Cl}_{2} \mathrm{H}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}$ or $\left.\left[{ }^{4 \mathrm{Bu}} \mathrm{PCP}\right) \operatorname{IrH}\left(\mu_{2}-\mathrm{Cl}\right)_{2} \operatorname{Ir}(\mathrm{COD})\right]$ [${ }^{\mathrm{tBu}} \mathrm{PCP}$ is $\kappa^{3}-2,6-\left({ }^{t} \mathrm{Bu}_{2} \mathrm{PCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$ and COD is $\eta^{4}-2,5$-cyclooctadiene], is an $\mathrm{Ir}^{\mathrm{III} /} / \mathrm{Ir}^{\mathrm{I}}$ dimer bridged by two chloride ions. The $\mathrm{Ir}_{2} \mathrm{Cl}_{2}$ framework is nearly planar, with a dihedral angle of 13.04 (4) ${ }^{\circ}$ between the two Ir centers. The compound was isolated as a hexane hemisolvate. A list of distances found in $\operatorname{Ir}(\mathrm{PCP})$ compounds is given.

Comment

There has been great interest in recent years in the development of pincer complexes (Albrecht \& van Koten, 2001; Singleton, 2003; Van der Boom \& Milstein, 2003), i.e. complexes of tridentate meridionally bound ligands (Moulton \& Shaw, 1976). Derivatives of the pincer complex (${ }^{(\mathrm{Bu}} \mathrm{PC}$ ${ }_{2}\left[{ }^{t \mathrm{Bu}} \mathrm{PCP}\right.$ is $\left.\kappa^{3}-2,6-\left({ }^{t} \mathrm{Bu}_{2} \mathrm{PCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right]$ (Gupta et al., 1996) have proven highly effective as catalysts for the dehydrogenation of alkanes (Gupta et al., 1996, 1997; Xu et al., 1997; Liu et al., 1999; Zhu et al., 2004; Goldman et al., 2006). The synthetic precursor to (${ }^{t \mathrm{Bu}} \mathrm{PCP}$) IrH_{2} (Gupta et al., 1996) is (${ }^{\mathrm{tBu}} \mathrm{PCP}$)IrHCl (Moulton \& Shaw, 1976). We have previously reported the hexanuclear iridium η^{4}-2,5-cyclooctadiene complex $[(\mathrm{COD}) \mathrm{Ir}]_{2}\left\{\eta^{6}-\left[\kappa^{4}-\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{CH}_{2} \mathrm{P}^{t} \mathrm{Bu}_{2}\right)_{2}\right] \mathrm{Ir}_{2} \mathrm{H}_{2} \mathrm{Cl}_{3}\right\}_{2}$ (COD is $1,5-$ cyclooctadiene), which has been observed as a by-product of the synthesis of the (${ }^{t \mathrm{Bu}} \mathrm{PCP}$) IrHCl complex (Zhang, Emge et al., 2004). We report here another such by-product, an orangered material that has been identified as (${ }^{\text {tBu }} \mathrm{PCP}$)$\operatorname{IrH}\left(\mu_{2} \mathrm{Cl}\right)_{2} \operatorname{Ir}(\mathrm{COD})$, which was isolated as the hexane hemisolvate, (I).

Complex (I) (Fig. 1) is best viewed as the di- μ-chlorido mixed-valence addition product of (PCP) IrHCl (Moulton \& Shaw, 1976) and '(COD)IrCl'. The latter can be viewed as a monomeric unit of the dimer $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$, which has been crystallographically characterized previously (Cotton et al.,
1986). The hydride was found in this complex using electron difference maps. The $\mathrm{Ir}-\mathrm{H}$ distance, which is known from neutron diffraction measurements to be $1.60 \AA$ (Eckert et al., 1995; Bau et al., 1993, 1984; Garlaschelli et al., 1985) and found on difference Fourier maps here at $1.60 \AA$, refines to a much shorter distance $(\sim 1.37 \AA)$, but still along the difference Fourier map $\mathrm{Ir}-\mathrm{H}$ vector, because of the close proximity to the metal atom $(Z=77)$. In such cases, it is preferable to restrain the distance to $1.60 \AA$, as was done here, using the SHELXL97 command 'DFIX 1.60. 01' (Sheldrick, 1997).

(I)

The pincer-bound Ir 1 atom is best considered as being formally in the +3 oxidation state. The $\mathrm{Ir} 1-\mathrm{C} 1$ distance (Table 1) is similar to the $\mathrm{Ir}-\mathrm{C}$ distance found in other PCP complexes of either Ir^{I} or $\mathrm{Ir}^{\mathrm{III}}$ (Table 2). The $\mathrm{Ir}-\mathrm{P}$ bond lengths (average 2.327 Å; Table 1) are consistent with the IrP bond lengths in reported PCP complexes of $\mathrm{Ir}^{\mathrm{III}}$ (Table 2), but somewhat outside the range reported for PCP complexes of $\operatorname{Ir}^{\mathrm{I}}$ (2.27-2.30 \AA; Table 2). As in other (PCP) Ir complexes, the $\mathrm{P}-\mathrm{Ir}-\mathrm{P}$ angle is decidedly nonlinear (Gupta et al., 1997; Zhang et al., 2005, 2006; Ghosh et al., 2007). Both P atoms are bent away from the Cl ligand cis to the PCP aryl C - Ir bond, as seen by the corresponding $\mathrm{P} 1-\mathrm{Ir} 1-\mathrm{Cl} 2$ and $\mathrm{P} 2-\mathrm{Ir} 1-\mathrm{Cl} 2$ angles given in Table 1. The COD-bound Ir2 atom is formally in the +1 oxidation state and can be viewed as approximately square planar if one considers the centers of the coordinating $\mathrm{C}=\mathrm{C}$ double bonds as single coordination points.

The $\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}_{2}$ portion of (I) has a geometry consistent with either $\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}_{2}$ part of $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$. However, presumably due to the steric bulk of the ${ }^{t \mathrm{Bu}} \mathrm{PCP}$ ligand, the considerable folding about the $\mathrm{Cl} \cdots \mathrm{Cl}$ vector observed in $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ is not present in compound (I). The dihedral angle between the $\mathrm{Cl}_{2}-\mathrm{Ir} 1$ and $\mathrm{Cl}_{2}-\mathrm{Ir} 2$ portions of the central $\mathrm{Ir}_{2} \mathrm{Cl}_{2}$ group is only $13.04(4)^{\circ}$, compared with the dihedral angle of 86° in $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ (Cotton et al., 1986). This gives rise to a significantly greater $\mathrm{Ir} \cdots \cdot \mathrm{Ir}$ distance; in $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ this distance is 2.910 (1) \AA, while in (I) the value is 3.6754 (2) \AA.

The $\mathrm{Ir}-\mathrm{Cl}$ bond lengths for the trivalent Ir 1 atom are noticeably longer (average $2.55 \AA$) than those for the monovalent Ir2 atom (average $2.40 \AA$) or those found in the $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ dimer (average $2.40 \AA$) (Cotton et al., 1986). As seen in Table 1, the specific values of the $\mathrm{Ir} 2-\mathrm{Cl}$ distances are fairly similar. The two $\mathrm{Ir} 1-\mathrm{Cl}$ distances, however, are substantially different, with the bond to the Cl atom trans to the strong trans-influence hydride ligand being substantially longer than that trans to the PCP aryl C atom. Not surprisingly, the $\mathrm{Ir} 1-\mathrm{Cl}$ distances in (I) are longer than the $\mathrm{Ir}-\mathrm{Cl}$

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms, with the exception of the iridium hydride ligand, have been omitted for clarity.
distances in (PCP)Ir complexes with terminal chloride ligands (Table 2).

The geometries of both weaker and significant $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are described in Table 3, where it is shown that the intramolecular $\mathrm{Cl} \cdots \mathrm{H}$ distances are as short as $2.66 \AA$ from atom Cl 2 to the PCP methyl atom $\mathrm{H} 16 A$ and as short as $2.79 \AA$ from atom Cl 1 to the COD methylene atom H 26 . There are two weak intermolecular (COD) $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl} 2$ interactions (last two entries in Table 3). The hexane solvent molecule lies across the inversion center at $y=\frac{1}{2}$ in a channel that propagates along the crystallographic b axis. As a result, each solvent molecule is surrounded by the methyl and methylene groups of six Ir_{2} dimer complexes. The packing of the Ir dimer complexes and the hexane solvent molecules yields only long $\mathrm{C}-\mathrm{H} \cdots \mathrm{H}-\mathrm{C}$ contacts $(>2.54 \AA)$ and the nearest Cl atom to any H atom on the hexane solvent is quite remote ($>5 \AA$).

Experimental

The synthesis was performed under an argon atmosphere using standard Schlenk and glove-box techniques. ${ }^{t \mathrm{Bu}} \mathrm{PCP}-\mathrm{H}$ was synthesized according to the method of Moulton \& Shaw (1976). ${ }^{\text {tBu }}$ PCP-H $(2.000 \mathrm{~g}, 5.068 \mathrm{mmol})$ was dissolved in toluene $(100 \mathrm{ml})$ to which $[\mathrm{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(1.660 \mathrm{~g}, 2.472 \mathrm{mmol})$ was added, and the resulting solution was refluxed under argon for 2 d . The solution was cooled to room temperature and the solvent was removed by vacuum, followed by addition of hexane $(50 \mathrm{ml})$ to the resulting solid. The red solution was pipetted away from the yellow insoluble material and filtered through glass wool before being placed in a freezer for one week. The resulting solid material $(0.4299 \mathrm{~g})$ contained large red crystals of complex (I), as well as a significant amount of microcrystalline $\left({ }^{\mathrm{Bu}} \mathrm{PCP}\right)$ IrHCl. Further details and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are given in the archived CIF.

Crystal data

```
\(\left[\mathrm{Ir}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{P}_{2}\right) \mathrm{Cl}_{2} \mathrm{H}\right]\).-
    \(0.5 \mathrm{C}_{6} \mathrm{H}_{14}\)
\(M_{r}=1001.09\)
Monoclinic, \(P 2_{1} / c\)
\(a=14.8424\) (7) \(\AA\)
\(b=11.6735\) (5) \(\AA\)
\(c=22.0589(10) \AA\)
```


Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS in SAINT-Plus; Bruker, 2003)
$T_{\text {min }}=0.361, T_{\text {max }}=0.558$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.062$
$S=1.00$
11498 reflections
$\beta=99.416(1)^{\circ}$
$V=3770.5$ (3) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=7.30 \mathrm{~mm}^{-1}$
$T=100$ (2) K
$0.19 \times 0.12 \times 0.08 \mathrm{~mm}$

42778 measured reflections 11498 independent reflections 10259 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

Ir1-C1	$2.012(3)$	Ir2-C26	$2.090(3)$
Ir1-P1	$2.326(1)$	Ir2-C30	$2.100(3)$
Ir1-P2	$2.328(1)$	Ir2-C25	$2.108(3)$
Ir1-Cl1	$2.507(1)$	Ir2-C29	$2.113(3)$
Ir1-Cl2	$2.591(1)$	Ir2-Cl1	$2.383(1)$
Ir1-H1	1.59	Ir2-Cl2	$2.407(1)$
			$96.29(3)$
C1-Ir1-P1	$83.27(9)$	P2-Ir1-Cl2	$79.98(2)$
C1-Ir1-P2	$81.21(9)$	Cl1-Ir1-Cl2	87
P1-Ir1-P2	$158.83(3)$	C1-Ir1-H1	79
C1-Ir1-Cl1	$176.79(9)$	P1-Ir1-H1	86
P1-Ir1-Cl1	$97.23(3)$	P2-Ir1-H1	96
P2-Ir1-Cl1	$99.07(3)$	Cl1-Ir1-H1	176
C1-Ir1-Cl2	$96.80(9)$	Cl2-Ir1-H1	$86.33(3)$
P1-Ir1-Cl2	$99.77(3)$	Cl1-Ir2-Cl2	

The hydride H atom was refined with a restrained $\mathrm{Ir}-\mathrm{H}$ distance of $1.60(1) \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{Ir} 1)$, then with a fixed position during the final cycle of refinement. All other nonmethyl H atoms were constrained to their respective idealized $s p^{2}$ or $s p^{3}$ geometries of 0.95 and $0.99 \AA$, respectively, and given $U_{\text {iso }}(\mathrm{H})$ values of 1.2 times $U_{\text {eq }}$ of the atom to which they are bonded. The methyl H atoms were given $U_{\text {iso }}(\mathrm{H})$ values of 1.5 times $U_{\text {eq }}$ of the C atom to which they are bonded $(\mathrm{C}-\mathrm{H}=0.98 \AA)$ and allowed to rotate as a rigid group to the angle that maximized the sum of the electron density at the three calculated H -atom positions.

Data collection: SMART (Bruker, 2005); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL.

The authors thank the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, US Department of Energy, for support of this research.

Table 2
Selected bond distances (\AA) of $\left({ }^{(\mathrm{Bu}} \mathrm{PCP}\right) \mathrm{Ir}^{\mathrm{I}}$ and $\left({ }^{\mathrm{IBu}} \mathrm{PCP}\right) \mathrm{Ir}^{\mathrm{III}}$ complexes.

$\left({ }^{(\mathrm{Bu}} \mathrm{PCP}\right)$ Ir complex	Ir-C(aryl)	$\mathrm{Ir}-\mathrm{P} 1$	$\mathrm{Ir}-\mathrm{P} 2$	$\mathrm{Ir}-\mathrm{Cl}$
Ir^{I} complexes				
(PCP) $\operatorname{Ir}\left(\mathrm{NH}_{3}\right)^{a}$	2.013 (4)	2.2737 (14)	2.2610 (13)	
(PCP) $\operatorname{Ir}(\mathrm{CO})^{b}$	2.102 (8)	2.298 (2)	2.291 (2)	
$(\mathrm{PCP}) \mathrm{IrN} \equiv \mathrm{NIr}(\mathrm{PCP})^{c}$	2.0534 (18)	2.2989 (5)	2.3028 (5)	
	2.0511 (18)	$2.29855)$	2.3001 (5)	
(PCP) $\mathrm{IrN}_{2}{ }^{\text {c }} \dagger$	2.0445	2.2891	2.2921	
$\mathrm{Ir}^{\text {III }}$ complexes				
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})(\mathrm{NHPh})^{a}$	2.049 (2)	2.2917 (14)	2.3429 (11)	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})(\mathrm{NHPh})(\mathrm{CO})^{a}$	2.077 (2)	2.3422 (6)	2.3338 (5)	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})\left(\mathrm{NH}_{2}\right)\left(\mathrm{CN}^{t} \mathrm{Bu}\right)^{a}$	2.077 (4)	2.3075 (11)	2.3111 (12)	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})\left(\kappa^{2}-\mathrm{O}_{2} \mathrm{COH}\right)^{d}$	2.04 (2)	2.321 (5)	2.331 (5)	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})[\mathrm{C}(\mathrm{O}) \mathrm{OH}]^{d}$	2.07 (2)	2.323 (5)	2.291 (6)	
(PCP) $\mathrm{Ir}(\mathrm{HgPh}) \mathrm{Cl}^{e}$	2.027 (3)	2.3238 (8)	2.3068 (8)	2.4599 (7)
(PCP) $\operatorname{Ir}(\mathrm{H})\left(\kappa^{2}-O, C \text {-nitrophenyl) }\right)^{f_{\ddagger}}$	2.028	2.3266	2.3307	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})\left(\kappa^{2}-O, C \text {-acetylphenyl }\right)^{f}$	2.0261 (17)	2.3209 (5)	2.3079 (5)	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})\left(\kappa^{2}-\mathrm{O}, \mathrm{O}-\mathrm{NO}_{2} \mathrm{CH}_{2}\right)^{g}$	2.0283 (17)	2.3117 (5)	2.3185 (5)	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})\left(\kappa^{1}-\mathrm{O}-\mathrm{ONOCH}_{2}\right)^{g}$	2.042 (6)	2.3325 (16)	2.3349 (16)	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right)^{g}$	2.091 (3)	2.3447 (9)	2.3499 (9)	
(PCP) $\operatorname{Ir}(\mathrm{H})\left(\mathrm{CH}_{2} \mathrm{NO}_{2}\right)\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)^{g}$	2.090 (2)	2.3374 (5)	2.3399 (5)	
(PCP) $\mathrm{IrH}_{2}{ }^{\text {a }}$	2.124 (13)	2.308 (2)	2.308 (2)	
$(\mathrm{PCP}) \operatorname{Ir}(\mathrm{H})(\mathrm{OH})^{i}$	2.01 (2)	2.304 (4)	2.303 (4)	
(PCP) $\mathrm{Ir}^{\mathrm{I}} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}{ }^{j}$	2.076 (11)	2.354 (3)	2.370 (3)	
trans-(PCP) $\operatorname{Ir}(\mathrm{H})\left(\mathrm{CH}_{3}\right)(\mathrm{CO})^{j}$	2.095 (3)	2.3215 (9)	2.3246 (9)	
cis-(PCP) $\operatorname{Ir}(\mathrm{H})\left(\mathrm{CH}_{3}\right)(\mathrm{CO})^{i}$	2.095 (5)	2.3256 (12)	2.3316 (11)	
cis-(PCP) $\operatorname{Ir}(\mathrm{H})\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)(\mathrm{CO})^{j}$	2.121 (2)	2.3403 (6)	2.3403 (6)	
(PCP) $\operatorname{Ir}\left(\eta^{2}-\mathrm{PhCCCHCHPh}\right)^{k}$	2.072 (2)	2.3054 (6)	2.3272 (7)	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{H})(\mathrm{CCPh})^{k} \S$	2.062	2.294	2.293	
$(\mathrm{PCP}) \mathrm{Ir}(\mathrm{CCPh})\left(\mathrm{PHCCH}_{2}\right)(\mathrm{CO})^{k}$	2.0901 (18)	2.3876 (5)	2.4317 (5)	
$(\mathrm{PCP}) \mathrm{Ir}[\mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{Ph}] \mathrm{Cl}^{k}$	2.0303 (18)	2.3405 (5)	2.3361 (5)	2.4628 (4)
$(\mathrm{PCP}) \mathrm{Ir}[\mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{Ph}](\mathrm{CO}) \mathrm{Cl}^{k}$	2.0478 (15)	2.4115 (4)	2.3817 (4)	2.4812 (4)
$(\mathrm{PCP}) \operatorname{Ir}[\mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{H}) \mathrm{PH}]\left(\mathrm{CCC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)(\mathrm{CO})^{k}$	2.090 (4)	2.3878 (11)	2.3683 (11)	
$(\mathrm{PCP}) \operatorname{Ir}(\mathrm{CCPh})[\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{H}) \mathrm{Ph}]^{k}$	2.068 (9)	2.344 (2)	2.328 (2)	
$(\mathrm{PCP}) \operatorname{Ir}(\mathrm{CCPh})[\mathrm{PhC}(\mathrm{H}) \mathrm{CC}(\mathrm{H}) \mathrm{C}(\mathrm{H}) \mathrm{Ph}](\mathrm{CO})^{k}$	2.092 (3)	2.4194 (7)	2.4136 (7)	
trans-(PCP$) \mathrm{Ir}(\mathrm{H})\left(\mathrm{CH}_{3}\right)\left(\mathrm{CNC}_{6} \mathrm{H}_{11}{ }^{\prime / 帀}\right.$	2.078	2.3035	2.3075	
trans-(PCP) $\mathrm{Ir}(\mathrm{H})\left(\mathrm{CH}_{3}\right)\left(\mathrm{CN}^{t} \mathrm{Bu}\right)^{l}$	2.081 (2)	2.3065 (6)	2.3067 (6)	
cis-(PCP) $\operatorname{Ir}(\mathrm{H})\left(\mathrm{CH}_{3}\right)\left(\mathrm{CNC}_{2} \mathrm{H}_{5}\right)^{l}$	2.0962 (19)	2.3062 (5)	2.3064 (5)	
para- NO_{2}-(PCP) $\mathrm{IrHCl}{ }^{m}$	2.015 (3)	2.3138 (12)	2.3111 (12)	2.4395 (9)

\dagger The asymmetric unit cell of (PCP) IrN_{2} consisted of four individual molecules; the values shown here are averaged and standard deviations have been omitted. \ddagger The unit cell of $(\mathrm{PCP}) \operatorname{Ir}(\mathrm{H})\left(\kappa^{2}-O, C\right.$-nitrophenyl) consisted of two inequivalent molecules; the values shown here are averaged and standard deviations have been omitted. § The unit cell of $(\mathrm{PCP}) \operatorname{Ir}(\mathrm{H})(\mathrm{CCPh})$ contained two inequivalent molecules; the values shown here are averaged and standard deviations have been omitted. ब trans-(PCP) $\operatorname{Ir}(\mathrm{H})\left(\mathrm{CH}_{3}\right)\left(\mathrm{CNC}_{6} \mathrm{H}_{11}\right)$ was found for two different phases; the values shown here are averaged and standard deviations have been omitted. References: (a) Kanzelberger et al. (2003); (b) Morales-Morales, Redon et al. (2001); (c) Ghosh et al. (2006); (d) Lee et al. (2003); (e) Zhang et al. (2001); (f) Zhang, Kanzelberger et al. (2004); (g) Zhang et al. (2006); (h) Gupta et al. (1997); (i) Morales-Morales, Lee et al. (2001); (j) Kanzelberger (2004); (k) Ghosh et al. (2007); (l) Zhang et al. (2005); (m) Grimm et al. (2000).

Table 3
Hydrogen-bond and short-contact geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{Cl} 1$	0.98	2.93	$3.785(4)$	147
$\mathrm{C} 15-\mathrm{H} 15 C \cdots \mathrm{Cl} 2$	0.98	2.80	$3.628(4)$	143
$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{Cl} 2$	0.98	2.66	$3.551(4)$	152
$\mathrm{C} 24-\mathrm{H} 24 B \cdots \mathrm{Cl} 2$	0.98	2.79	$3.295(3)$	113
$\mathrm{C} 24-\mathrm{H} 24 C \cdots \mathrm{Cl} 1$	0.98	2.91	$3.782(3)$	149
$\mathrm{C} 24-\mathrm{H} 24 B \cdots \mathrm{Cl} 2$	0.98	2.79	$3.295(3)$	113
$\mathrm{C} 26-\mathrm{H} 26 \cdots \mathrm{Cl} 1$	0.94	2.79	$3.165(3)$	105
$\mathrm{C} 27-\mathrm{H} 27 B \cdots \mathrm{Cl} 11^{\mathrm{i}}$	0.99	2.81	$3.659(3)$	144
$\mathrm{C} 30-\mathrm{H} 30 \cdots \mathrm{Cl} 2$	0.87	2.93	$3.264(3)$	105
$\mathrm{C} 32-\mathrm{H} 32 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.99	2.90	$3.865(3)$	166

Symmetry code: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA3042). Services for accessing these data are described at the back of the journal.

References

Albrecht, M. \& van Koten, G. (2001). Angew. Chem. Int. Ed. 40, 3750-3781. Bau, R., Chiang, M. Y., Chiau, U., Garlaschelli, L., Martinengo, S. \& Koetzle, T. F. (1984). Inorg. Chem. 23, 4758-4762.

Bau, R., Schwerdtfeger, C. J., Garlaschelli, L. \& Koetzle, T. F. (1993). Inorg. Chem. 11, 3359-3362.
Bruker (2003). SAINT-Plus (Version 6.45) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). SMART for WNT/2000. Version 5.632. Bruker AXS Inc., Madison, Wisconsin, USA.
Cotton, F. A., Lahuerta, P., Sanau, M. \& Schwotzer, W. (1986). Inorg. Chim. Acta, 120, 153-157.
Eckert, J., Jensen, C. M., Koetzle, T. F., Husebo, T. L., Nicol, J. \& Wu, P. (1995). J. Am. Chem. Soc. 117, 7271-7272.

Garlaschelli, L., Khan, S. I., Bau, R., Longoni, G. \& Koetzle, T. F. (1985). J. Am. Chem. Soc. 107, 7212-7213.
Ghosh, R., Kanzelberger, M., Emge, T. J., Hall, G. S. \& Goldman, A. S. (2006). Organometallics, 25, 5668-5671.
Ghosh, R., Zhang, X., Achord, P., Emge, T. J., Krogh-Jespersen, K. \& Goldman, A. S. (2007). J. Am. Chem. Soc. 129, 853-866.
Goldman, A. S., Roy, A. H., Huang, Z., Ahuja, R., Schinski, W. \& Brookhart, M. (2006). Science, 312, 257-261.

metal-organic compounds

Grimm, J. C., Nachtigal, C., Mack, H.-G., Kaska, W. C. \& Herman, A. (2000). Inorg. Chem. Commun. 3, 511-514.
Gupta, M., Hagen, C., Flesher, R. J., Kaska, W. C. \& Jensen, C. M. (1996). J. Chem. Soc. Chem. Commun. pp. 2083-2084.
Gupta, M., Hagen, C., Kaska, W. C., Cramer, R. E. \& Jensen, C. M. (1997). J. Am. Chem. Soc. 119, 840-841.
Kanzelberger, M. T. (2004). PhD thesis, Rutgers University, USA.
Kanzelberger, M., Zhang, X., Emge, T. J., Goldman, A. S., Zhao, J., Incarvito, C. \& Hartwig, J. F. (2003). J. Am. Chem. Soc. 125, 13644-13645.

Lee, D. W., Jensen, C. M. \& Morales-Morales, D. (2003). Organometallics, 22, 4744-4749.
Liu, F., Pak, E. B., Singh, B., Jensen, C. M. \& Goldman, A. S. (1999). J. Am. Chem. Soc. 121, 4086-4087.
Morales-Morales, D., Lee, D. W., Wang, Z. \& Jensen, C. M. (2001). Organometallics, 20, 1144-1147.
Morales-Morales, D., Redon, R., Wang, Z., Lee, D. W., Yung, C., Magnuson, K. \& Jensen, C. M. (2001). Can. J. Chem. 79, 823-829.
Moulton, C. J. \& Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 10201024.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Singleton, J. T. (2003). Tetrahedron, 59, 1837-1857.
Van der Boom, M. E. \& Milstein, D. (2003). Chem. Rev. 103, 1759-1792.
Xu, W., Rosini, G. P., Gupta, M., Jensen, C. M., Kaska, W. C., Krogh-Jesperson, K. \& Goldman, A. S. (1997). J. Chem. Soc. Chem. Commun. pp. 22732274.

Zhang, X., Emge, T. J., Ghosh, R. \& Goldman, A. S. (2005). J. Am. Chem. Soc. 127, 8250-8251
Zhang, X., Emge, T. J., Ghosh, R., Krogh-Jesperson, K. \& Goldman, A. S. (2006). Organometallics, 25, 1303-1309.

Zhang, X., Emge, T. J. \& Goldman, A. S. (2001). J. Chem. Crystallogr. 33, 613617.

Zhang, X., Emge, T. J. \& Goldman, A. S. (2004). Inorg. Chim. Acta, 357, $3014-$ 3018.

Zhang, X., Kanzelberger, M., Emge, T. J. \& Goldman, A. S. (2004). J. Am. Chem. Soc. 126, 13192-13193.
Zhu, K., Achord, P. D., Zhang, X., Krogh-Jespersen, K. \& Goldman, A. S. (2004). J. Am. Chem. Soc. 126, 13044-13053.

